DSC Tool: a web-service-based framework for statistical comparison of stochastic optimization algorithms

Tome Eftimov, Gašper Petelin, Peter Korošec

March 6, 2020
1 DSCTool

The DSCTool was developed and implemented to make all the required knowledge for making different performance evaluations accessible from one place by guiding the user from providing input data (optimisation algorithm results) and selection of desired comparison to the final result of comparison. Further the implementation provides natural progress for all steps of performance evaluation, so no extra knowledge from the user is required.

1.1 REST web services

A web service is software that supports one or more open protocols and standards defined for exchanging data between applications or systems and makes itself available over the internet. Due to usage of open protocols and standards, software can be written in arbitrary programming language and run on various platforms. This makes web service widely interoperable and decoupled from implementations that uses their functionalities. The protocols most commonly used are the Simple Object Access Protocol (SOAP) and REpresentational State Transfer (REST). Due to its simplicity, flexibility, and lightweightness, we have decided to use REST. Since REST is based on HTTP, we are able use basic HTTP methods, such as GET, PUT, POST, and DELETE. A REST web service access point is defined by Uniform Resource Identifier (URI), which is a string of characters that unambiguously identifies an individual resource. Data that is being transmitted can use different standard representations, such as XML or JSON.

The web services are accessible from following HTTPS URL https://ws.ijs.si:8443/dsc-1.4/service/ and are using JSON for input/output data representation.

1.1.1 Registration service

To prevent uncontrolled abuse of web server, we have incorporated a mandatory registration. A user must register using the following service.

URI manage/user

HTTP method POST

Input JSON

```
{
    "name": "Name Surname",
    "affiliation": "affiliation details",
    "email": "name.surname@email.provider",
    "username": "your_username",
    "password": "your_password"
}
```
All passwords are encrypted before being stored into database. For accessing any other service a username and password using HTTP Basic Authentication is required.

1.1.2 Ranking service

This service returns ranking provided by the DSC ranking scheme.

URI rank

HTTP method POST

Input JSON

```json
{
"epsilon": double_value,
"monte_carlo_iterations": integer_value,
"method": {
"name": "KS"|"AD",
"alpha": double_value
},
"data": [{
"algorithm": "algorithm name",
"problems": [{
"name": "problem name",
"data": [
double_value,
...
]
}, ...]
}, ...]
}
```

The ϵ key values greater than zero initiate pDSC, with number defining practical level. The $\text{monte}_\text{carlo}_\text{iterations}$ key values greater than zero initiate Monte Carlo variant of DSC, with number defining the number of permutations. The method key defines two-sample test (Kolmogorov-Smirnov test (KS) or Anderson-Darling test (AD)), which determines if two samples come from the same distribution, and its corresponding significance level (α key). Samples are described with the data key where each algorithm’s sample set is described by algorithm’s name and list of problems containing a problem name and obtained solution values for it by the algorithm.

Output JSON

```json
{
"result": {
"valid_methods": [
"omnibus\text{\_}test\_name",
...
],
}
"ranked_matrix": [ { "problem": "problem name", "result": [ { "algorithm": "algorithm name", "rank": double_value } ], ... ], "number_algorithms": integer_value, "parametric_tests": boolean_value }, "success": boolean_value]

In case of successful ranking (indicated by the success key), we receive a list of valid supported omnibus tests (valid_methods key), number of algorithms that were ranked (number_algorithms key), indication if parametric test is eligible (parametric_tests key), and list of ranks (ranked_matrix key). Each item in ranked_matrix is defined by the name of the problem (problem key) and rankings for each algorithm (result key).

1.1.3 Multivariate service

To include into analysis also the location of the solutions (not only its values) multivariate service is used.

**URI** multivariate

**HTTP method** POST

**Input JSON**

```
"method": {
 "desired_distribution": integer_value ,
 "alpha": double_value
},
"data": [{
 "algorithm": "algorithm name" ,
 "problems": [{
 "name": "problem name" ,
 "data": [
 double_value ,
 ...
] ,
 ...]
 },
 ...]
}
```

The desired_distribution key defines the preferred distribution of solutions, with 0 preferring clustered distribution and with 1 preferring sparse distributions. The alpha key defines significance level used by statistical test for comparing distributions. The data key structure is similar to the one
found in rank service with the difference that the data key consists of array of array of double values, describing the solution locations and not its values.

**Output JSON** Output of this service is exactly the same as rank service.

### 1.1.4 Ensemble service

In case rankings of multi-objective algorithms performances according to set of quality indicators are desired, the ensemble service is used. Here, ensemble of different quality indicators is provided according to average, hierarchical majority vote, or data-driven.

**URI** ensemble

**HTTP method** POST

**Input JSON**

```json
{
 "method": "average"|"hierarchical"|"data-driven",
 "problems": [
 "problem_name",
 ...
],
 "indicators": [
 {
 "indicator": "indicator name",
 "data": [
 "algorithm": "algorithm name",
 "problems": [
 "double_value",
 ...
],
 ...
],
 ...
 },
 ...
]
}
```

The method key defines the ensemble method (average, hierarchical, or data-driven). The problems key represent a list of problems on which algorithms were run. The ensembles key represents a list of ensemble items, where each item is represented by indicator name, and list of rank values for each of algorithms achieved for each problem.

**Output JSON** Output of this service is exactly the same as rank service.

### 1.1.5 Omnibus service

To acquire statistical significance according to obtained rankings (either from rank, multivariate or ensemble service) the omnibus service needs to be used.

**URI** omnibus

**HTTP method** POST
Input JSON
Input JSON takes majority of information from the result key of (rank, multivariate, or ensemble services), with the only difference being selection of the actual omnibus statistical test and its significance level through the method key.

```json
{
 "method": {
 "name": "omnibus test name",
 "alpha": double_value
 },
 "ranked_matrix": [{
 "problem": "problem name",
 "result": [{
 "algorithm": "algorithm name",
 "rank": double_value
 }, ...]
 }, ...],
 "number_algorithms": integer_value,
 "parametric_tests": boolean_value
}
```

Output JSON

```json
{
 "result": {
 "message": "information if hypothesis was rejected or not",
 "p_value": double_value,
 "t": double_value,
 "method": {
 "name": "omnibus test used",
 "alpha": double_value
 },
 "algorithm_means": [{
 "algorithm": "algorithm name",
 "mean": double_value
 }, ...]
 },
 "success": boolean_value
}
```

The result of omnibus service consist of the message key, which describes if null hypothesis was rejected or not, the p_value key indicating p-value, the t key representing test statistic value (if appropriate, otherwise is 0), statistic method being applied, and means of rankings for each algorithm.

1.1.6 Post-hoc service

In case statistical significance is observed in the samples using omnibus test, we need to identify which algorithm perform better than the others using post-hoc service.

URI posthoc

HTTP method POST
Input JSON

Input JSON contains `algorithm_means` key returned by omnibus service, with addition of keys related to applied non-parametric Friedman or Friedman-aligned-rank tests.

```json
{
 "algorithm_means": [{
 "algorithm": "algorithm name",
 "mean": double_value
 }, ...],
 "k": integer_value,
 "n": integer_value,
 "base_algorithm": "control algorithm name",
 "method": {
 "name": "friedman" | "friedman-aligned-rank",
 "alpha": double_value
 }
}
```

The $k$ key represent the number of compared algorithms, the $n$ key represent the number of problems, the `base_algorithm` key defines the control algorithm (one of the algorithms defined inside the `algorithm_means` key), and the `method` key defines corresponding statistics test with respect to selected omnibus test (friedman or friedman-aligned-rank) with desired significance level (alpha key). We need to mention here, that in the case when Iman-Davenport statistical test is used, the post-hoc test must be the same as in the case of the Friedman test.

Output JSON

```json
{
 "result": {
 "adjusted_p_values": [{
 "name": "ZValue",
 "algorithms": [{
 "algorithm": "algorithm name",
 "value": double_value
 }, ...]
 }, ...],
 "name": "UnadjustedPValue",
 "algorithms": [{
 "algorithm": "algorithm name",
 "value": double_value
 }, ...]
 },
 "name": "Holm",
 "algorithms": [{
 "algorithm": "algorithm name",
 "value": double_value
 }, ...]
}
```

6
The result of post-hoc service consists of a list of four results for each of the algorithms with respect to selected control algorithm. Z-value (ZValue) which is the result of selected statistic, unadjusted p-value (UnadjustedPValue) that is calculated from Z-value, and two adjusted p-values according to Holm and Hochberg procedures.

1.2 Examples of DSCTool usage

Next, we are going to provide details about how different scenarios, taken from our previous studies, can be done using the proposed web services. The examples were taken from the previous studies because i) we would like to show the general applicability of the framework in every possible scenario independent of the data ii) the results from using it can be completely different when different data is being analyzed (e.g., statistical significance can be found or not, same is true for the practical, etc.), and iii) to test the validity of the web services implementations, meaning we can check the results with the results reported in the previous studies that were obtained using R scripts. After reproducing the same results reported in the previous studies, to make users familiar with how it can be used, we provide one example for every web service. First, we are going to present an example from [1], where three single-objective optimization algorithms are compared with regard to the obtained solutions’ values (i.e. DSC ranking scheme). Second, we will provide an example from [2], where three single-objective optimization algorithms are compared with regard to the distribution of the solutions in the search space (i.e. eDSC ranking scheme). Finally, we are going to present an example that involves multi-objective optimization. Since individual performance indicator ranking is applied in the same manner as single-objective optimization (only solution values are replaced with performance indicator values), we are going to show data-driven ensemble techniques using a set of performance indicators taken from [3, 4]. With these three samples we should cover the basics of how DSCTool should be used in any scenario dealing with single- or multi-objective optimization.

Since the input and output JSONs are too big to be presented in the paper, the reader can find all used example files in the following subsections at [http://cs.ijs.si/dl/dsctool/JSON_FILE](http://cs.ijs.si/dl/dsctool/JSON_FILE) where JSON_FILE needs to be replaced with appropriate name as stated in the examples below. Additionally, in the following examples one also needs to replace “username” with an actual username and JSON_FILE with the JSON found in it.
1.2.1 Rank web service

Let us take results of three algorithms, BSif [5], BSqi [5], and CMA-MSR [6] and their results on 22 benchmark functions at dimension 10 from BBOB 2015 competitions [7], as presented in [1]. First we need to transform results into the appropriate JSON structure as can be seen at [http://cs.ijs.si/dl/dsctool/dsc.json]. Here we have inserted appropriate information into data key. In addition, we needed to define if we are interested in practical or statistical significance. Since we are interested in statistical significance, the epsilon key is set to 0, otherwise this would need to be set according to the desired practical level. We are also not interested in Monte Carlo simulations of obtained results, so we set the Monte_carlo_iterations key also to 0, otherwise we would need to set this integer according to the desired number of simulations. Lastly, we needed to define the statistical test which will be applied to determine if there is any significance in the data. In our case, we used Kolmogorov-Smirnov test (KS) with significance level 0.05 (alpha). The actual call to the rank service would be the following.

```
curl --user username
 -H "Accept: application/json"
 -X POST https://ws.ijs.si:8443/dsc-1.4/service/rank
 -H "Content-Type: application/json"
 -d @dsc.json
```

After executing the above call, we receive a result seen at [http://cs.ijs.si/dl/dsctool/dsc.result]. The result consists of the rankings for all algorithms and all benchmark problems together with two important pieces of information. The first one gives us an information whether a parametric test is applicable as an omnibus statistical test and the second one gives us an information about which statistical tests are appropriate. Using the results from the rank web service, we can use the omnibus statistical web service to see if there is any statistical significance in the data. For this reason, we need to construct an input JSON for the omnibus web service as can be seen at [http://cs.ijs.si/dl/dsctool/omnibus.json]. Since we are replicating the tests found in [1], we selected the Friedman test with a significance level of 0.05.

```
curl --user username
 -H "Accept: application/json"
 -X POST https://ws.ijs.si:8443/dsc-1.4/service/omnibus
 -H "Content-Type: application/json"
 -d @omnibus.json
```

The results of the above call to omnibus web service, can be seen at [http://cs.ijs.si/dl/dsctool/omnibus.result]. From it, we can observe that the null hypothesis is rejected, with acquired p-value of 0.007 (as was the case in [1]). Since omnibus test showed that there is a statistical significance between algorithms, we need to make a post-hoc test, to see which algorithms made the
difference. In our case we selected the algorithm with lowest mean value (CMA-MSR) as our control algorithm and compare it to the other two algorithms. So, we took algorithm means from omnibus result, set k key (number of algorithms) to 3, n key (number of benchmark functions) to 22, base_algorithm as CMA-MSR, and as statistical method we selected Friedman test (since omnibus test was also performed using Friedman test) with significance level 0.05.

```
curl --user username
 -H "Accept: application/json"
 -X POST https://ws.ijs.si:8443/dsc-1.4/service/posthoc
 -H "Content-Type: application/json"
 -d @posthoc.json
```

Looking at the results of the above call to the posthoc web service, found at `http://cs.ijs.si/dl/dsctool/posthoc.result`, we can see that CMA-MSR significantly outperforms the other algorithms. Since omnibus test and post-hoc procedures are the same for all rankings, we will not show them for the examples in following subsections.

### 1.2.2 Multivariate web service

For the multivariate web service we are going to look at the example from [2], where we compare three algorithms: the Cauchy-EDA, MCS, and iAMALGAM on results from 22 benchmark functions on dimension 2 taken from the BBOB 2009 competition [8]. To make this comparison, we should create an input JSON as seen at `http://cs.ijs.si/dl/dsctool/multivariate.json`. First we need to insert algorithm results in the data key and determine the method to be applied on the data. To replicate situation from the article, we set desired_distribution key to 0 (to prefer coarser distributions) and significance level to 0.05. After that, we can call the multivariate service as:

```
curl --user username
 -H "Accept: application/json"
 -X POST https://ws.ijs.si:8443/dsc-1.4/service/multivariate
 -H "Content-Type: application/json"
 -d @multivariate.json
```

From the result of the above call found at `http://cs.ijs.si/dl/dsctool/multivariate.result`, we acquire the same rankings for the algorithms as found in [2], which can be then used for further omnibus testing. Since the explanation of the results and further steps are the same as for the rank web service, we will not discuss them here.

### 1.2.3 Ensemble web service

For the ensemble web service we are going to take example from [4], where we compare three multi-objective algorithms: the DEMO_SP2, DEMO_NS-II,
and NSGA-II on results from 16 test problems with 4 different performance indicators (hypervolume, epsilon, r2, gen-dist) [9]. We will skip the first step which is acquirement of rankings for compared algorithms for all 4 performance indicators by using the rank web service, since this was already shown in Section 1.2.1. Taking this into account, we can create an input JSON as seen at http://cs.ijs.si/dl/dsctool/ensemble.json by setting all the relevant data in problems and indicators keys, and select the desired ensemble method. In our case we decided to select a data-driven one.

curl --user username
-H "Accept: application/json"
-X POST https://ws.ijs.si:8443/dsc-1.4/service/ensemble
-H "Content-Type: application/json"
-d @ensemble.json

From the result of the above call found at http://cs.ijs.si/dl/dsctool/ensemble.result, we acquire the same rankings for the algorithms as found in [4], which can be then used for further omnibus testing.

References


