
DSCTool: a web-service-based framework for
statistical comparison of stochastic optimization

algorithms

version 1.5

Tome Eftimov, Gašper Petelin, Urban Škvorc, Peter Korošec

January 20, 2022

1

The DSCTool was developed and implemented to make all the required
knowledge for making different performance evaluations accessible from one
place by guiding the user from providing input data (optimisation algorithm
results) and selection of desired comparison to the final result of comparison.
Further the implementation provides natural progress for all steps of perfor-
mance evaluation, so no extra knowledge from the user is required.

1 REST web services
A web service is software that supports one or more open protocols and stan-
dards defined for exchanging data between applications or systems and makes
itself available over the internet. Due to usage of open protocols and standards,
software can be written in arbitrary programming language and run on various
platforms. This makes web service widely interoperable and decoupled from
implementations that uses their functionalities. The protocols most commonly
used are the Simple Object Access Protocol (SOAP) and REpresentational State
Transfer (REST). Due to its simplicity, flexibility, and lightweightedness, we
have decided to use REST. Since REST is based on HTTP, we are able use
basic HTTP methods, such as GET, PUT, POST, and DELETE. A REST web
service access point is defined by Uniform Resource Identifier (URI), which is a
string of characters that unambiguously identifies an individual resource. Data
that is being transmitted can use different standard representations, such as
XML or JSON.

The latest web services are accessible from following HTTPS URL https:
//ws.ijs.si/dsc/service/ and are using JSON for input/output data rep-
resentation. In case a specific version would like to be used, the following
HTTPS URL https://ws.ijs.si/dsc/1.5/service/ should be used where
current version 1.5 is being accessed.

1.1 Registration service
To prevent uncontrolled abuse of web server, we have incorporated a mandatory
registration. A user must register using the following service.

URI manage/user

HTTP method POST

Input JSON
{

”name” : ”Name Surname ” ,
” a f f i l i a t i o n ” : ” a f f i l i a t i o n d e t a i l s ” ,
” emai l ” : ”name . surname@email . p rov ide r ” ,
” username ” : ” your username ” ,
” password ” : ” your password ”

}

1

https://ws.ijs.si/dsc/service/
https://ws.ijs.si/dsc/service/
https://ws.ijs.si/dsc/1.5/service/

All passwords are encrypted before being stored into database. For accessing
any other service a username and password using HTTP Basic Authentication
is required.

1.2 Ranking service
This service returns ranking provided by the DSC ranking scheme.

URI rank

HTTP method POST

Input JSON
{

” e p s i l o n ” : double va lue ,
” m o n t e c a r l o i t e r a t i o n s ” : i n t e g e r v a l u e ,
”method” : {

”name” : ”KS” | ”AD” ,
” alpha ” : doub le va lue

} ,
” data ” : [{

” a lgor i thm ” : ” a lgor i thm name” ,
” problems ” : [{

”name” : ” problem name” ,
” data ” : [

double va lue ,
. . .
]

} , {
. . .

} , . . .]
} , . . .]

}

The epsilon key values greater than zero initiate pDSC, with number defin-
ing practical level. The monte carlo iterations key values greater than zero
initiate Monte Carlo variant of DSC, with number defining the number
of permutations. The method key defines two-sample test (Kolmogorov-
Smirnov test (KS) or Anderson-Darling test (AD)), which determines if
two samples come from the same distribution, and its corresponding sig-
nificance level (alpha key). Samples are described with the data key where
each algorithm’s sample set is described by algorithm’s name and list of
problems containing a problem name and obtained solution values for it
by the algorithm.

Output JSON
{

” r e s u l t ” : {
” val id methods ” : [

”omnibus t e s t name” ,
. . .

] ,

2

” ranked matr ix ” : [{
” problem ” : ” problem name” ,
” r e s u l t ” : [{

” a lgor i thm ” : ” a lgor i thm name” ,
” rank ” : doub le va lue

} , . . .]
} , . . .] ,
” number algorithms ” : i n t e g e r v a l u e ,
” p a r a m e t r i c t e s t s ” : boo l ean va lue

} ,
” s u c c e s s ” : boo l ean va lue

}

In case of successful ranking (indicated by the success key), we receive a
list of valid supported omnibus tests (valid methods key), number of algo-
rithms that were ranked (number algorithms key), indication if parametric
test is eligible (parametric tests key), and list of ranks (ranked matrix key).
Each item in ranked matrix is defined by the name of the problem (prob-
lem key) and rankings for each algorithm (result key). In case there is not
sufficient amount of problems to make omnibus test, the valid methods
key will contain a message “Not enough problems for multiple-problem
analysis!”.

1.3 Multivariate service
To include into analysis also the location of the solutions (not only its values)
multivariate service is used.

URI multivariate

HTTP method POST

Input JSON {
”method” : {

” d e s i r e d d i s t r i b u t i o n ” : i n t e g e r v a l u e ,
” alpha ” : doub le va lue

} ,
” data ” : [{

” a lgor i thm ” : ” a lgor i thm name” ,
” problems ” : [{

”name” : ” problem name” ,
” data ” : [

[
double va lue ,
. . .

] , . . .]
} , {

. . .
}]

} , . . .]
}

3

The desired distribution key defines the preferred distribution of solutions,
with 0 preferring clustered distribution and with 1 preferring sparse dis-
tributions. The alpha key defines significance level used by statistical test
for comparing distributions. The data key structure is similar to the one
found in rank service with the difference that the data key consists of ar-
ray of array of double values, describing the solution locations and not its
values.

Output JSON Output of this service is exactly the same as rank service.

1.4 Multiobjective service
To limit the influence of selection of quality indicator on statistical analysis
a multiobjective service is used, so small (statistically insignificant) differences
between the distribution of approximation sets do not influence the final conclu-
sion. Note: This is really time consuming service and can easily take
more than 10 minutes to process so please set timeout appropriately.

URI multiobjective

HTTP method POST

Input JSON {
”method” : {

” alpha ” : doub le va lue
} ,
” data ” : [{

” a lgor i thm ” : ” a lgor i thm name” ,
” problems ” : [{

”name” : ” problem name” ,
” approximat ionSets ” : [{

” pre fe renceData ” : double va lue ,
” data ” : [
[

double va lue ,
. . .

] , . . .]
} , . . .]

} , {
. . .

}]
} , . . .]

}

The alpha key defines significance level used by statistical test for com-
paring distributions. The data key structure, inside the added approxi-
mationSets structure, is the same as the one found in multivariate service
with the difference that array of array of double values describe one ap-
proximation set (objectives for each solution in a approximation set) and
the preferenceData key is added to the structure and consists of calculated
quality indicator value from approximation set.

4

Output JSON Output of this service is exactly the same as rank service.

1.5 Ensemble service
In case rankings of multi-objective algorithms performances according to set
of quality indicators are desired, the ensemble service is used. Here, ensem-
ble of different quality indicators is provided according to average, hierarchical
majority vote, or data-driven.

URI ensemble

HTTP method POST

Input JSON {
”method” : ” average ” | ” h i e r a r c h i c a l ” | ” data−dr iven ” ,
” problems ” : [

” problem name” ,
. . .

] ,
” i n d i c a t o r s ” : [{

” i n d i c a t o r ” : ” i n d i c a t o r name” ,
” data ” : [{

” a lgor i thm ” : ” a lgor i thm name” ,
” problems ” : [

double va lue ,
. . .

]
} , . . .]

} , . . .]
}

The method key defines the ensemble method (average, hierarchical, or
data-driven). The problems key represent a list of problems on which
algorithms were run. The ensembles key represents a list of ensemble
items, where each item is represented by indicator name, and list of rank
values for each of algorithms achieved for each problem.

Output JSON Output of this service is exactly the same as rank service.

1.6 Omnibus service
To acquire statistical significance according to obtained rankings (either from
rank, multivariate, multiobjective, or ensemble service) the omnibus service
needs to be used.

URI omnibus

HTTP method POST

Input JSON Input JSON takes majority of information from the result key of
(rank, multivariate, or ensemble services), with the only difference being
selection of the actual omnibus statistical test and its significance level
through the method key.

5

{
”method” : {

”name” : ”omnibus t e s t name” ,
” alpha ” : doub le va lue

} ,
” ranked matr ix ” : [{

” problem ” : ” problem name” ,
” r e s u l t ” : [{

” a lgor i thm ” : ” a lgor i thm name” ,
” rank ” : doub le va lue

} , . . .]
} , . . .] ,
” number algorithms ” : i n t e g e r v a l u e ,
” p a r a m e t r i c t e s t s ” : boo l ean va lue

}

Output JSON
{

” r e s u l t ” : {
” message ” : ” in fo rmat ion i f hypothes i s was r e j e c t e d or not

↪→ ” ,
” p va lue ” : double va lue ,
” t ” : double va lue ,
”method” : {

”name” : ”omnibus t e s t used ” ,
” alpha ” : doub le va lue

} ,
” algorithm means ” : [{

” a lgor i thm ” : ” a lgor i thm name” ,
”mean” : doub le va lue

} , . . .]
} ,
” s u c c e s s ” : boo l ean va lue

}

The result of omnibus service consist of the message key, which describes
if null hypothesis was rejected or not, the p value key indicating p-value,
the t key representing test statistic value (if appropriate, otherwise is 0),
statistic method being applied, and means of rankings for each algorithm.
We would like to mention that if ”wilcoxon-signed-rank-less” method is
selected the p-value represents the result of comparison of algorithm with
lower mean value vs. algorithm with higher value (i.e., if p-value is lower
than alpha value then algorithm with lower mean significantly outperforms
the other algorithm, otherwise there is no significance between them).

1.7 Post-hoc service
In case statistical significance is observed in the samples using omnibus test, we
need to identify which algorithm perform better than the others using post-hoc
service.

URI posthoc

6

HTTP method POST

Input JSON Input JSON contains algorithm means key returned by omnibus
service, with addition of keys related to applied non-parametric Friedman
or Friedman-aligned-rank tests.
{

” algorithm means ” : [{
” a lgor i thm ” : ” a lgor i thm name” ,
”mean” : doub le va lue

} , . . .] ,
”k” : i n t e g e r v a l u e ,
”n” : i n t e g e r v a l u e ,
” base a lgo r i thm ” : ” c o n t r o l a lgor i thm name” ,
”method” : {

”name” : ” fr iedman ” | ” friedman−al igned −rank ” ,
” alpha ” : doub le va lue

}
}

The k key represent the number of compared algorithms, the n key rep-
resent the number of problems, the base algorithm key defines the control
algorithm (one of the algorithms defined inside the algorithm means key),
and the method key defines corresponding statistics test with respect to
selected omnibus test (friedman or friedman-aligned-rank) with desired
significance level (alpha key). We need to mention here, that in the case
when Iman-Davenport statistical test is used, the post-hoc test must be
the same as in the case of the Friedman test.

Output JSON
{

” r e s u l t ” : {
” a d j u s t e d p v a l u e s ” : [{

”name” : ”ZValue ” ,
” a lgor i thms ” : [{

” a lgor i thm ” : ” a lgor i thm name” ,
” value ” : doub le va lue

} , . . .]
} ,
{

”name” : ” UnadjustedPValue ” ,
” a lgor i thms ” : [{

” a lgor i thm ” : ” a lgor i thm name” ,
” va lue ” : doub le va lue

} , . . .]
} ,
{

”name” : ”Holm” ,
” a lgor i thms ” : [{

” a lgor i thm ” : ” a lgor i thm name” ,
” va lue ” : doub le va lue

} , . . .]
} ,
{

”name” : ” Hochberg ” ,

7

” a lgor i thms ” : [{
” a lgor i thm ” : ” a lgor i thm name” ,
” va lue ” : doub le va lue

} , . . .]
}]

} ,
” s u c c e s s ” : boo l ean va lue

}

The result of post-hoc service consists of a list of four results for each of the
algorithms with respect to selected control algorithm. Z-value (ZValue)
which is the result of selected statistic, unadjusted p-value (UnadjustedP-
Value) that is calculated from Z-value, and two adjusted p-values accord-
ing to Holm and Hochberg procedures.

1.8 Visualize service
To acquire some visualization and understanding from obtained rankings (either
from rank, multivariate or ensemble service) the visualize service needs to be
used.

URI visualize

HTTP method POST

Input JSON Input JSON takes the ranked matrix of (rank, multivariate, or
ensemble services) with the method key defining the desired visualization.
Currently only performViz visualization is provided.
{

”method” : ” performViz ” ,
” ranked matr ix ” : [{

” problem ” : ” problem name” ,
” r e s u l t ” : [{

” a lgor i thm ” : ” a lgor i thm name” ,
” rank ” : doub le va lue

} , . . .]
} , . . .]

}

Output PNG Image The result of visualize service consist of the PNG im-
age, which shows performViz [] type of visualization. Later on different
visualizations will be be added.

2 Supporting web services
2.1 Create/ensemble service
Since creation of input JSON for ensemble web service requires a lot of work to
create a valid input JSON from outputs of rank-based web services, a supporting
web service was created that simplifies the job.

8

URI support/create/ensemble

HTTP method POST

Input JSON Input JSON consists of a method key defining ensemble method
and ensembles key defining a list of key/value pairs, where the key defines
the name of the indicator, while the value consists of the ranked matrix
obtained from the associated output of rank service call.
{

”method” : ” average | h i e r a r c h i c a l | data−dr iven ” ,
” ensembles ” : {

” i n d i c a t o r name 1” : [
{

” problem ” : ” problem name” ,
” r e s u l t ” : [{

” a lgor i thm ” : ” a lgor i thm name” ,
” rank ” : doub le va lue

} , . . .]
} , . . .] ,

” i n d i c a t o r name 2” : . . .
}

}

Output JSON
{

”method” : ” average | h i e r a r c h i c a l | data−dr iven ” ,
” problems ” : [

” problem name” ,
. . .

] ,
” i n d i c a t o r s ” : [{

” i n d i c a t o r ” : ” i n d i c a t o r name” ,
” data ” : [{

” a lgor i thm ” : ” a lgor i thm name” ,
” problems ” : [

double va lue ,
. . .

]
} , . . .]

} , . . .]
}

The result of create/ensemble service is an ensemble JSON input, where
the method consists of all possible values (divided by the | sign) and the
user must select only one of them (by deleting the others) before using it
as an input JSON for ensemble service.

3 Examples of DSCTool usage
Next, we are going to provide details about how different scenarios, taken from
our previous studies, can be done using the proposed web services. The exam-
ples were taken from the previous studies because i) we would like to show the

9

general applicability of the framework in every possible scenario independent of
the data ii) the results from using it can be completely different when different
data is being analyzed (e.g., statistical significance can be found or not, same
is true for the practical, etc.), and iii) to test the validity of the web services
implementations, meaning we can check the results with the results reported
in the previous studies that were obtained using R scripts. After reproducing
the same results reported in the previous studies, to make users familiar with
how it can be used, we provide one example for every web service. First, we
are going to present an example from [1], where three single-objective optimiza-
tion algorithms are compared with regard to the obtained solutions’ values (i.e.
DSC ranking scheme). Second, we will provide an example from [2], where three
single-objective optimization algorithms are compared with regard to the distri-
bution of the solutions in the search space (i.e. eDSC ranking scheme). Finally,
we are going to present an example that involves multi-objective optimization.
Since individual performance indicator ranking is applied in the same manner
as single-objective optimization (only solution values are replaced with perfor-
mance indicator values), we are going to show data-driven ensemble techniques
using a set of performance indicators taken from [3, 4]. With these three sam-
ples we should cover the basics of how DSCTool should be used in any scenario
dealing with single- or multi-objective optimization.

Since the input and output JSONs are too big to be presented in the pa-
per, the reader can find all used example files in the following subsections at
http://cs.ijs.si/dl/dsctool/JSON_FILE, where JSON FILE needs to be re-
placed with appropriate name as stated in the examples below. Additionally,
in the following examples one also needs to replace “username” with an actual
username and JSON FILE with the JSON found in it.

3.1 Rank web service
Let us take results of three algorithms, BSif [5], BSqi [5], and CMA-MSR [6]
and their results on 22 benchmark functions at dimension 10 from BBOB 2015
competitions [7], as presented in [1]. First we need to transform results into the
appropriate JSON structure as can be seen at http://cs.ijs.si/dl/dsctool/
dsc.json. Here we have inserted appropriate information into data key. In
addition, we needed to define if we are interested in practical or statistical
significance. Since we are interested in statistical significance, the epsilon key is
set to 0, otherwise this would need to be set according to the desired practical
level. We are also not interested in Monte Carlo simulations of obtained results,
so we set the Monte carlo iterations key also to 0, otherwise we would need
to set this integer according to the desired number of simulations. Lastly, we
needed to define the statistical test which will be applied to determine if there
is any significance in the data. In our case, we used Kolmogorov-Smirnov test
(KS) with significance level 0.05 (alpha). The actual call to the rank service
would be the following.

curl --user username

10

http://cs.ijs.si/dl/dsctool/JSON_FILE
http://cs.ijs.si/dl/dsctool/dsc.json
http://cs.ijs.si/dl/dsctool/dsc.json

-H "Accept: application/json"
-X POST https://ws.ijs.si/dsc/service/rank
-H "Content-Type: application/json"
-d @dsc.json

After executing the above call, we receive a result seen at http://cs.ijs.
si/dl/dsctool/dsc.result. The result consists of the rankings for all al-
gorithms and all benchamrk problems together with two important pieces of
information. The first one gives us an information whether a parametric test
is applicable as an omnibus statistical test and the second one gives us an in-
formation about which statistical tests are appropriate. Using the results from
the rank web service, we can use the omnibus statistical web service to see
if there is any statistical significance in the data. For this reason, we need
to construct an input JSON for the omnibus web service as can be seen at
http://cs.ijs.si/dl/dsctool/omnibus.json. Since we are replicating the
tests found in [1], we selected the Friedman test with a significance level of 0.05.

curl --user username
-H "Accept: application/json"
-X POST https://ws.ijs.si/dsc/service/omnibus
-H "Content-Type: application/json"
-d @omnibus.json

The results of the above call to omnibus web service, can be seen at http:
//cs.ijs.si/dl/dsctool/omnibus.result. From it, we can observe that the
null hypothesis is rejected, with acquired p-value of 0.007 (as was the case in
[1]). Since omnibus test showed that there is a statistical significance between
algorithms, we need to make a post-hoc test, to see which algorithms made the
difference. In our case we selected the algorithm with lowest mean value (CMA-
MSR) as our control algorithm and compare it to the other two algorithms. So,
we took algorithm means from omnibus result, set k key (number of algorithms)
to 3, n key (number of benchmark functions) to 22, base algorithm as CMA-
MSR, and as statistical method we selected Friedman test (since omnibus test
was also performed using Friedman test) with significance level 0.05.

curl --user username
-H "Accept: application/json"
-X POST https://ws.ijs.si/dsc/service/posthoc
-H "Content-Type: application/json"
-d @posthoc.json

Looking at the results of the above call to the posthoc web service, found at
http://cs.ijs.si/dl/dsctool/posthoc.result, we can see that CMA-MSR
significantly outperforms the other algorithms. Since omnibus test and post-hoc
procedures are the same for all rankings, we will not show them for the examples
in following subsections.

11

http://cs.ijs.si/dl/dsctool/dsc.result
http://cs.ijs.si/dl/dsctool/dsc.result
http://cs.ijs.si/dl/dsctool/omnibus.json
http://cs.ijs.si/dl/dsctool/omnibus.result
http://cs.ijs.si/dl/dsctool/omnibus.result
http://cs.ijs.si/dl/dsctool/posthoc.result

3.2 Multivariate web service
For the multivariate web service we are going to look at the example from [2],
where we compare three algorithms: the Cauchy-EDA, MCS, and iAMALGAM
on results from 22 benchmark functions on dimension 2 taken from the BBOB
2009 competition [8]. To make this comparison, we should create an input
JSON as seen at http://cs.ijs.si/dl/dsctool/multivariate.json. First
we need to insert algorithm results in the data key and determine the method
to be applied on the data. To replicate situation from the article, we set de-
sired distribution key to 0 (to prefer coarser distributions) and significance level
to 0.05. After that, we can call the multivariate service as:

curl --user username
-H "Accept: application/json"
-X POST https://ws.ijs.si/dsc/service/multivariate
-H "Content-Type: application/json"
-d @multivariate.json

From the result of the above call found at http://cs.ijs.si/dl/dsctool/
multivariate.result, we acquire the same rankings for the algorithms as
found in [2], which can be then used for further omnibus testing. Since the
explanation of the results and further steps are the same as for the rank web
service, we will not discuss them here.

3.3 Ensemble web service
For the ensemble web service we are going to take example from [4], where
we compare three multi-objective algorithms: the DEMO SP2, DEMO NS-II,
and NSGA-II on results from 16 test problems with 4 different performance
indicators (hypervolume, epsilon, r2, gen-dist) [9]. We will skip the first step
which is acquirement of rankings for compared algorithms for all 4 performance
indicators by using the rank web service, since this was already shown in Section
3.1. Taking this into account, we can create an input JSON as seen at http:
//cs.ijs.si/dl/dsctool/ensemble.json by setting all the relevant data in
problems and indicators keys, and select the desired ensemble method. In our
case we decided to select a data-driven one.

curl --user username
-H "Accept: application/json"
-X POST https://ws.ijs.si/dsc/service/ensemble
-H "Content-Type: application/json"
-d @ensemble.json

From the result of the above call found at http://cs.ijs.si/dl/dsctool/
ensemble.result, we acquire the same rankings for the algorithms as found in
[4], which can be then used for further omnibus testing.

12

http://cs.ijs.si/dl/dsctool/multivariate.json
http://cs.ijs.si/dl/dsctool/multivariate.result
http://cs.ijs.si/dl/dsctool/multivariate.result
http://cs.ijs.si/dl/dsctool/ensemble.json
http://cs.ijs.si/dl/dsctool/ensemble.json
http://cs.ijs.si/dl/dsctool/ensemble.result
http://cs.ijs.si/dl/dsctool/ensemble.result

4 DSCTool clients
For programming language R there is already a client implemented. The docu-
mentation for it can be found at https://ws.ijs.si/dsc/R-client.pdf.

References
[1] T. Eftimov, P. Korošec, B. K. Seljak, A novel approach to statistical compar-

ison of meta-heuristic stochastic optimization algorithms using deep statis-
tics, Information Sciences 417 (2017) 186–215.

[2] T. Eftimov, P. Korošec, A novel statistical approach for comparing meta-
heuristic stochastic optimization algorithms according to the distribution of
solutions in the search space, Information Sciences 489 (2019) 255–273.

[3] T. Eftimov, P. Korošec, B. K. Seljak, Comparing multi-objective optimiza-
tion algorithms using an ensemble of quality indicators with deep statistical
comparison approach, in: 2017 IEEE Symposium Series on Computational
Intelligence (SSCI), IEEE, 2017, pp. 1–8.

[4] T. Eftimov, P. Korošec, B. K. Seljak, Data-driven preference-based deep
statistical ranking for comparing multi-objective optimization algorithms, in:
International Conference on Bioinspired Methods and Their Applications,
Springer, 2018, pp. 138–150.

[5] P. Poš́ık, P. Baudǐs, Dimension selection in axis-parallel brent-step method
for black-box optimization of separable continuous functions, in: Proceed-
ings of the Companion Publication of the 2015 on Genetic and Evolutionary
Computation Conference, ACM, 2015, pp. 1151–1158.

[6] A. Atamna, Benchmarking ipop-cma-es-tpa and ipop-cma-es-msr on the
bbob noiseless testbed, in: Proceedings of the Companion Publication of
the 2015 on Genetic and Evolutionary Computation Conference, ACM, 2015,
pp. 1135–1142.

[7] Black-box optimization benchmarking at CEC’2015 (CEC-BBOB), http://
coco.gforge.inria.fr/doku.php?id=cec-bbob-2015, [Online; accessed
1-May-2019].

[8] N. Hansen, S. Finck, R. Ros, A. Auger, Real-Parameter Black-Box Optimiza-
tion Benchmarking 2009: Noiseless Functions Definitions, RR-6829, INRIA,
2009.

[9] T. Tušar, B. Filipič, Differential evolution versus genetic algorithms in mul-
tiobjective optimization, Evolutionary Multi-Criterion Optimization. EMO
2007. Lecture Notes in Computer Science 4403 (2007) 257–271.

13

https://ws.ijs.si/dsc/R-client.pdf
http://coco.gforge.inria.fr/doku.php?id=cec-bbob-2015
http://coco.gforge.inria.fr/doku.php?id=cec-bbob-2015

	REST web services
	Registration service
	Ranking service
	Multivariate service
	Multiobjective service
	Ensemble service
	Omnibus service
	Post-hoc service
	Visualize service

	Supporting web services
	Create/ensemble service

	Examples of DSCTool usage
	Rank web service
	Multivariate web service
	Ensemble web service

	DSCTool clients

